Structure-SLAM: Low-Drift Monocular SLAM in Indoor Environments
نویسندگان
چکیده
منابع مشابه
Scale Drift-Aware Large Scale Monocular SLAM
State of the art visual SLAM systems have recently been presented which are capable of accurate, large-scale and real-time performance, but most of these require stereo vision. Important application areas in robotics and beyond open up if similar performance can be demonstrated using monocular vision, since a single camera will always be cheaper, more compact and easier to calibrate than a mult...
متن کاملPop-up SLAM: a Semantic Monocular Plane SLAM for Low-texture Environments
Existing simultaneous localization and mapping (SLAM) algorithm is not robust in challenging low-texture environments because of few salient features. The resulting sparse or semi-dense map also conveys little information for motion planning. Though some work utilize plane or scene layout for dense map regularization, they require decent state estimation from other sources. In this paper, we pr...
متن کاملLSD-SLAM: Large-Scale Direct Monocular SLAM
We propose a direct (feature-less) monocular SLAM algorithm which, in contrast to current state-of-the-art regarding direct methods, allows to build large-scale, consistent maps of the environment. Along with highly accurate pose estimation based on direct image alignment, the 3D environment is reconstructed in real-time as pose-graph of keyframes with associated semi-dense depth maps. These ar...
متن کاملDimensionless Monocular SLAM
It has recently been demonstrated that the fundamental computer vision problem of structure from motion with a single camera can be tackled using the sequential, probabilistic methodology of monocular SLAM (Simultaneous Localisation and Mapping). A key part of this approach is to use the priors available on camera motion and scene structure to aid robust real-time tracking and ultimately enable...
متن کاملEdge Landmarks in Monocular SLAM
While many visual simultaneous localisation and mapping (SLAM) systems use point features as landmarks, few take advantage of the edge information in images. Those SLAM systems that do observe edge features do not consider edges with all degrees of freedom. Edges are difficult to use in vision SLAM because of selection, observation, initialisation and data association challenges. However, a map...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Robotics and Automation Letters
سال: 2020
ISSN: 2377-3766,2377-3774
DOI: 10.1109/lra.2020.3015456